Миф о теплом ламповом звуке. Ламповый звук лучше? Отнюдь. Точка зрения. А теперь пройдёмся по недостаткам

Приобретя некоторый практический опыт в построении УНЧ на лампах, и прочитав значительный объем литературы и форумных дискуссий я позволю себе заметить, что как вокруг любого практически важного и в тоже время мало поддающегося строгому научному анализу вопроса возникает почва для появления разного рода мифов, и ламповый звук не является исключением. Правда, честно признаюсь, что всилу неизбежной доли субъективности в восприятии звука, эту статью надо воспринимать только как мое личное мнение, ИМХО.

Миф первый. Чем больше Raa (или Ra) выходного трансформатора, тем выше качество звука. Этот миф имеет под собой простую почву – чем выше Rа, тем меньше коэффициент гармоник (правда, это верно только для триода). Но как уже давно установлено, ламповые усилители проигрывают по коэффициенту гармоник транзисторным, но от этого они не звучат хуже, даже наоборот. Мой опыт говорит о том, что с повышением Rа звучание усилителя становится аналитичным, плоским (сужается ширина и глубина сцены) и эмоционально маловыразительным – особенно это чувствуется для триодов – хотя остается очень чистым тонально и детально точным. В общем случае самым оптимальным является хорошо известное из теории соотношение Ra = (2 – 3) Ri для триода и Ra= 0.1 Ri для пентода, хотя практически для различных ламп и трансформаторов это соотношение может изменяться в некоторых пределах. Известны и исключения из правила – 6С41С и 6С19П, и другие лампы с высоковй крутизной для устройств электропитания – для них Ra = 5 – 8 Ri это норма.

Миф третий. Звучание УНЧ улучшается, если выходное сопротивление предшествующего каскада (предусилителя, фонокорректора, тюнера и т.п.) будет как можно меньше, а входное сопротивление УНЧ или последующего каскада будет как можно выше (отчасти этот миф перекликается с первым упомянутым выше). Этот миф как и два предыдущих также идет из теории. Понятно, что при этом снижаются потери, минимизируются гармоники, облегчается работа выходного каскада на линию (в случае наличия межблочных кабелей). Но это верно с точки зрения теории для синусоидального моносигнала. Но музыка это не моносигнал. И не механическая сумма моночастот. Это очень сложная, мало поддающаяся точному математическому анализу волновая система. Я бы сказал это поток синусоид различной частоты, амплитуды, фазы, который как и все волновые системы способен к интерференции (интермодуляции) и дифракции. И задача УНЧ донести этот поток (точнее, его структуру) от начала до конца неизменным. А вот значительные перепады импеданса нарушают структуру этого потока. Поэтому, например, не стоит ставить в конце фонокорректора катодный повторитель на 6Н30П, если у вас входное сопротивление УНЧ 100 Килоом. Особенно плохо на передачу объема звуковых образов оказывает использование катодного повторителя (100 % ООС) в комбинации с его очень высоким входным сопротивлением. Одним из немногих элементов, способных сохранить структуру звукового потока при значительном перепаде импеданса является трансформатор – именно поэтому японцы уделяют так много внимания конструированию этих устройств, и с успехом применяют их не только на выходе ламповых УНЧ, но и как межкаскадный. Как итог – схема качественного УНЧ, способного донести до слушателя все нюансы, включая такие понятия как объемность, глубина и ширина сцены, детальность образов – не должна иметь значительных перепадов импеданса между каскадами. Нарушить структуру музыкального потока также может глубокая ООС, но об этом – отдельный разговор.

Миф четвертый. ООС убивает звук. Причина появления этого мифа не совсем понятна, но может быть она кроется в том, что в философии назывется отрицанием отрицания, или говоря проще, похмелье после повального увлечения УНЧ с ООС в конце прошлого столетия. В 80-е – 90-е годы в журнале Радио трудно было найти схему УНЧ, в которой бы авторы не преподносили бы наличие глубокой и/или многопетлевой ООС как средство повышения качества усилителя. Прошло время, и теперь, когда выяснилось, что с ООС все не так хорошо, как это казалось, теперь апологеты хай-энда ударились в другую крайность – никакой ООС вообще! Конечно, это намного проще – не надо рассчитывать фазовые смещения и бороться с самовозбуждением – просто не надо делать ООС и все! Тут некоторых творцов лжехайэнда на триодах без ООС я бы сравнил с незадачливым поваром, который утверждает, что самый вкусный суп получается только из чистой картошки – и никаких там помидоров, капусты, и недай бог, специй! Мне кажется, что небольшая (неглубокая) ООС, особенно в мощных (и как следствие, многокаскадных) УНЧ весьма полезна для снижения искажений и повышения стабильности усилителя. И она вовсе не нарушает упомянутый выше звуковой поток, а даже наоборот, иногда вносит в этот поток небольшую, но весьма полезную “реверберацию”. Введение ООС имеет и другое преимущество – усилитель становится менее чувствителен к подбору компонентов – он уже играет как целостная схема со своим почерком, а не как набор разрозненных деталей или каскадов, на подбор которых можно потратить состояние и массу времени – и так и не прийти к выводу, а что тут на что влияет и от чего же зависит конечный результат… А про воспроизводимость результатов вообще лучше не говорить.

Полумифы. Например, что фиксированное смещение звучит лучше, чем автоматическое. Возможно, для некоторых ламп при прочих равных условиях так оно и есть. Но при равных условиях. Но как их соблюсти? Откройте любой справочник по лампам. Возьмем, например, 300В. Там черным по белому написано, что максимальное сопротивление сеточного резистора при автоматическом смещении – 250 К, а при фиксированном – 50 К. Разница в пять раз. Ну как тут “улучшить” звучание классических УНЧ на 300В с автоматическим смещением? Ведь надо снижать сопротивление сеточного резистора! Но тогда пошло-поехало – соответственно, в пять раз надо увеличивать емкость межкаскадного конденсатора – это раз, снижать выходное сопротивление предшествующего каскада….- два, и городить отдельную схему питания отрицательной полярности – три….. После такого “улучшения”, которое правильнее назвать основательной переделкой, врядли ваш усилитель будет звучать лучше. Как минимум, вы столкнетесь с тем, что чувствительность вашего “улучшения” стала ниже, и уже нужен предусилитель…. Или тогда придется проектировать новый, с другой, более крутой лампой на раскачке… Вот вам и улучшение. А может быть все-таки проще приобрести хороший электролит для катодного резистора и все-таки оставить автоматическое? Подумайте! Кстати, любителям работать с триодами напомню, что они более чувствительны к завышению номинала сеточного резистора (подозреваю, что именно поэтому у 300В часто горит одна из половинок накала), в этом отношении пентоды работают стабильнее. Так что это дополнительный аргумент в пользу применения пентодов в оконечном каскаде с фиксированным смещением.

Другой полумиф. Чем выходной трансформатор больше, тем лучше. Причина появления этого мифа наверно лежит там же, где и причина почему так много людей предпочитают ездить по городу на джипах(или ездят в одиночку на микроавтобусах), или почему” размер имеет значение”. Да, несомненно, что трансформатор значительных размеров будет давать более глубокий бас, однако на этом список его достоинств закончится. Даже если не говориь о цене или больших затратах материалов и сил на его изготовление, такой трансформатор не сможет обеспечить приемлемой полосы пропускания по высшим частотам, и очень велика вероятность появления механичесих резонансов в обмотках и сердечнике. К тому же, если учесть магнитные потери в сердечнике, которые неизбежно растут с ростом веса железа (даже если при этом работать с несколько более низком значении магнитной индукции) то отсюда следует, что увеличение потерь приведет к снижению детальности в передаче нюансов. Ниже приведена картинка зависимости потерь в сердечнике в зависимости от величины магнитной индукции. И это для одной из лучших марок трансформаторного железа – М6, понятно, что с доступным на рынке железом ОСМ, ТС и т.п положение еще хуже. Дополнительно на эту тему хочу процитировать место из публикации www.gendocs.ru/v4971/?download=3

Потери энергии при перемагничивании

Это необратимые потери электрической энергии, которая выделяется в материале в виде тепла.

Потери на перемагничивание магнитного материала складыва­ется из потерь на гистерезис и динамических потерь.

Потери на гистерезис создаются в процессе смещения стенок доменов на начальной стадии намагничивания. Вследствие неодно­родности структуры магнитного материала на перемещение стенок доменов затрачивается магнитная энергия.

Потери энергии на гистерезис

Рг = a*f

где а – коэффициент, зависящий от свойств и объема материала; f – частота тока, Гц.

Динамические потери Р вт вызываются частично вихревыми то­ками, которые возникают при изменении направления и напряжен­ности магнитного поля; они также рассеивают энергию:

Pвт = b*f*f

где b – коэффициент, зависящий от удельного электрического сопротивления, объема и геометрических размеров образца.

Потери на вихревые токи из-за квадратичной зависимости от ча­стоты поля превосходят потери на гистерезис на высоких частотах.

К динамическим потерям относятся также потери на последей­ствие Р п , которые связаны с остаточным изменением магнитного состояния после изменения напряженности магнитного поля. Они зависят от состава и термической обработки магнитного материа­ла и проявляются на высоких частотах. Потери на последействие (магнитную вязкость) необходимо учитывать при использовании ферромагнетиков в импульсном режиме.

Общие потери в магнитном материале

P = Pг + Рвт + Рn

…….”

Заметьте, что во все формулы потерь входит такая величина как объем, которая напрямую связана с массой (через плотность). Причем в формулы входит также частота, иногда во второй степени, что позволяет предположить дополнительные потери информации в высокочастотном диапазоне.

Пример разрушения мифов – прекрасно звучащий американский двухтактный стерео (два канала по 35 ватт) усилитель DYNACO ST-70 на пентоде EL34, в котором, кстати, есть и неглубокая ООС. Я купил его у американского аудио-энтузиста Боба Латино в виде кита и пока у меня переезд мастерской из Риги в Балгале, собрал мне его мой друг Станислав, за что ему большое спасибо. В отличие от классического аппарата, у него улучшен предусилитель. Вот схема (в ней ошибка – конденсатор С5, так же как и С3 должен иметь номинал 0,1):

Так вот звук этого усилителя – мощный, но при этом объемный, детальный и динамичный даже на маленькой громкости. Его можно слушать даже с одной колонкой – создается полное впечатление наличия сцены. Поскольку в нем есть ООС, он не очень чувствителен к замене ламп и конденсаторов. Подбирая лампы, мне удалось получить просто великовлепный, тонально сбалансированный и в тоже время объемный звук с лампами 6П3С-Е вместо EL34 (благо цоколевка у них одинаковая). Любителям развесистого звука понравится EL34 (или КТ77) ОТ JJ – у них приподняты басы и верха. В качестве фазоинвертора очень хороша 12АТ7WC PhilipsJAN, на е-Вау они продаются по 6 – 8 долларов за шт. Во многом объемность звука зависит от первой лампы, у меня пока вставлена 6201 Valvo, но подыскаваю более дешевую замену. Межкаскадные С7 и С8 – Мундорф MCap, 35 Евро за 4 штуки, но прекрасно работали и К40У-9 – это редкий случай, когда от замены советских конденсаторов на Мундорф в звуке ничего не изменилось. Кенотрон – 5АR4 из Китая. Прозрачность звучания усилителя очень выиграла от подключения его в сеть через сетевой фильтр, видимо по той причине, что никакой фильтрации ВЧ помех по питанию на входе усилителя нет. Сейчас слушаю этот шедевр с недорогими напольными трехполосными колонками Phonar. Для компенсации слабости 6П3С по ВЧ усилитель соединен с колонками посеребряным колоночным кабелем от Qued: http://www.qed.co.uk/173/gb/product/speaker_cables/silver_anniversary-xt.htm . В результате я ненароком получил наконец рецепт ” как готовить 6П3С? ” – раньше мне из нее ничего путного сделать не удавалось. Но об этом – отдельная тема.

March 6th, 2011 , 09:10 pm

ТЛЗ. Как бы приборы показывают, что транзисторные усилители лучше. А вот аудиофилы хвалят ламповые.

Как-то прочитал в одном форуме, что якобы немалая часть фишки ТЛЗ в том, что в ламповых усилителях плохая связь с динамиками по напряжению, а больше по току. Что, якобы, если взять "ламповые" колонки и подключить их к транзисторнуму усилителю через балласт в несколько ом, то получится хорошее приближение ТЛЗ.

Если динамик приводится в действие током, то внутренности и наружности колонки будут сильнее связаны акустически. При этом внешние звуки смогут резонировать с внутренностями колонки, так, как если бы она была вообще отключена от усилителя, но зато и внутренние переотражения будут так же легко выходить наружу вместо того, чтобы накапливаться.

Понятно, что в реальности имеет место нечто среднее.

Вообще, колонки обычно рассчитываются из условия, что управлять ими будут напряжением, а не током. Но, с другой стороны, если управлять колонками током, то, хоть мы и получим гармонические искажения на электрических фильтрах и динамической головке, мы зато уменьшим влияние переотражений, способных, по-идее, сильно изгадить импульсный отклик, да ещё и нелинейностей добавить.

Изучал ли кто-нибудь этот вопрос? Пробовал ли управлять колонками током? Или включать резистор в цепь, как некоторые советуют? Как меняется звук?

UPD: "Ламповые" колонки -- это колонки, предназначенные для использования с ламповыми усилителями, отличаются видом зависимости комплексного электрического сопротивления от частоты, в чём именно отличие -- я не помню.

UPD2: Взял 3-полосную колонку и попробовал постучать по среднечастотному динамику при закороченной и разомкнутой цепи. Звук разный. При закороченной цепи, звук резкий и упругий, как если стучать по пластмассе или сильно натянутой жесткой пленке. При разомкнутой, звук тоже упругий, но мягкий и смазанный, как если стучать по тугому дивану или подвешенному ковру.

В настоящее время ламповая техника вновь становится популярной. Это вызвано не только особенностями в ее звучании, но и некоторыми эстетическими особенностями. В связи с этим появляется много разных суждений о концепции конструирования ламповых устройств. Многие из них основываются на вполне справедливых выводах, но некоторые чистой воды вымысел и основываются на абсолютно нелепых суждениях. Попробуем разобраться и, как принято в электронной технике, пойдем с «хвоста».

1. Кенотроны в питании

Многие считают, что ламповый УМЗЧ лучше питать от выпрямителей на кенотронах, мотивируя это следующими доводами:

* У выпрямителей на кенотронах больше выходное сопротивление, нежели у полупроводниковых. Лампы «чувствуют себя комфортнее в однородной ламповой среде».

Выходное сопротивление кенотрона действительно выше, но тут стоит вспомнить закон Ома для полной цепи; из которого ясно видно, что чем больше выходное (внутреннее) сопротивление источника, тем ощутимее будет меняться напряжение в зависимости от тока нагрузки (рис.1)

Известно, что при падении анодного напряжения возрастают нелинейные искажения. При возрастании выходной мощности, возрастает и потребляемый ток, и, следовательно, просадка в выходном сопротивлении БП. Следовательно этот эффект будет умножаться. Также следует отметить качество выпрямления и требования к сглаживанию (Рис.2).

В вариантах а и б требуются конденсаторы большей емкости и дроссели с большим количеством витков.

К тому же необходим трансформатор с отводом от средней точки, так что вполне очевидно преимущество мостовой схемы.

*Время готовности выпрямителя на кенотронах больше, чем на полупроводниках. Это дает возможность остальным лампам прогреться и предотвращает подачу анодного напряжения на холодные лампы.

Кенотрон действительно опаздывает по сравнению с полупроводником. Однако, вспомним катоды выходных ламп. Мало вероятно, что 5Ц4С прогревается дольше, чем катоды, хотя бы, 5-ваттного УМЗЧ (6П1П или 6П14П). В лучшем случае они будут готовы одновременно. Я уж не говорю о более мощных выходных лампах, таких как 6П3С, 6П45С, ГУ-50 и т.д. Скорость прогрева кенотрона смехотворна, по сравнению со столь массивными катодами, особенно, если используется кенотрон прямого накала, например 5Ц3С. Подача высокого напряжения на «холодную» лампу действительно снижает срок службы, но решать эту проблему путем использования выпрямителя с неизвестным временем готовности, на мой взгляд, не обоснованно. Для решения этой задачи лучше применять термостатирование выходного каскада (довольно сложный вариант. Если это вас заинтересует, можем обсудить на форуме с участием других специалистов. Буду благодарен за вопросы и отзывы). Гораздо проще использовать обычный таймер с компаратором и триггером (Рис.3).

Данное устройство не измеряет температуру катода или анодный ток. Оно только создает выдержку включения анодного питания, пока заряжается С1. Выдержку можно подстроить путем регулировки опорного напряжения компаратора (R2) в зависимости от суммарной теплоемкости катодов. Питается таймер переменным током с обмотки накала 6,3В.

2. Расположение и компоновка ламп и прочих элементов.

*Некоторые лампы звучат лучше лежа под определенным углом к горизонту. Данное утверждение может быть справедливым применительно к лампам с особенной конструкцией электродов. Например торпотроны или другие лампы диапазона СВЧ, устроенные весьма специфично. Что же касается обычных приемно-усилительных ламп, то здесь действуют самые простые законы термодинамики. При нагревании материал расширяется, прогретые участки сеток (они представляют собой проволочные спирали, навитые на траверзах) провисают и создают межвитковые замыкания. Особенно часто это происходит между катодом и управляющей сеткой, которая располагается как можно ближе к катоду для увеличения крутизны ВАХ. Как это отразится на работе прибора – судите сами.

*Для уменьшения уровня шума, места пайки в Hi- End аппаратуре нужно покрывать инертными металлами. Для снижения уровня шума есть более эффективные и дешевые средства. Действительно, кристаллы оксидов могут создавать шум за счет микро-разрядов из-за разности потенциалов на разных участках цепи. Искушенные слушатели могут это слышать. Но если вы не олигарх, достаточно покрыть контакты и выводы лаком. Что же касается шума, то более эффективным средством борьбы является стабилизация напряжения питания. И это относится не только к питанию анода. Основной причиной шума в лампах являются флюктуации эмиссии, т.е. неравномерный выброс электронов из катода. Очевидно, что для предотвращения этого явление необходимо обеспечить равномерный прогрев катода. Так что если удерживать стабильный режим подогревателя, можно во многом улучшить шумовые параметры.

*Лампы нельзя экранировать. Данный тезис, вероятнее всего, вышел из рассуждений о тепловом режиме. Лампы, которые можно и нужно экранировать, работают в слаботочных (входных) каскадах. Действительно, вряд ли кому то придет в голову накрыть колпаком ГУ-81 или ГУ-49. Любая наводка ничтожна по сравнению с их анодным током. Чего не скажешь об «усилителе напряжения» и фазоинверторе (в 2-тактных усилителях). Наводки в каскадах с высокой чувствительностью и высокоомным входом чувствуют себя весьма вольготно. Однако следует отметить, что в процессе работы они не разогреваются до высоких температур (если, разумеется, работают в оптимальном режиме). К тому же баллон изготовлен из термостойкого стекла. Так что 100-125°С они вполне могут выдержать. Кроме защиты от наводок, экран, в какой-то степени, способствует термостатичности. Так что чем лучше экранирован вход, тем меньше проблем на выходе.

Кстати, есть лампы, у которых экран уже входит в конструкцию. У них на цоколе даже есть вывод этого экрана. Это октальные лампы в металлическом корпусе, такие как, например, 6Ж8. У них герметичный стеклянный баллон накрыт металлическим колпаком.

3. Режим питания

Не будем забывать, что кроме анода, в лампах нуждается в питании еще подогреватель. На этот счет тоже есть множество спорных мнений. Рассмотрим некоторые.

*Лучше перекалить, чем недокалить. Так считают некоторые музыканты, конструирующие гитарные «примочки». Такой прием действительно усиливает эмиссию катода, но без должного потенциала на аноде, все эти лишние электроны просто разлетаются без всякой пользы. Ничего особенного кроме сокращения срока службы это не дает. Скажу больше – при пониженном питании катод все равно разогреется до нужной температуры, только на это потребуется чуть больше времени. А вот срок службы и надежность, следовательно, всего устройства значительно увеличится. Особенно если речь идет о низковольтных (например электрометрических) лампах.

*На переменном токе подогреватель служит дольше, чем на постоянном. Весьма сомнительное утверждение. Однако со всей уверенностью можно констатировать, что цепи накала переменного тока являются сильнейшим источником наводок, поскольку проходят по всем участкам схемы. И тут уж никакая позолота контактов не спасет. Кроме того переменный ток весьма сложно стабилизировать, а что дает поддержание стабильного напряжения накала было сказано выше.

*Для получения более яркого эффекта анодное напряжение должно быть выше номинального и вообще лампа должна быть слегка перегружена. Действительно это придает звуку своеобразный оттенок за счет нелинейных искажений. Это так же сокращает срок службы. Кроме того эти искажения сложно регулировать, если только не подстраивать анодное напряжение особым регулятором (затея нелепая даже на мой взгляд). Так что лучше подобрать спокойный анодный режим и оставить в покое. Эффективнее и безопаснее экспериментировать с обратными связями, за счет которых обеспечивается эффект (фильтры, встречно-параллельные диоды и т.д.). И вообще имейте ввиду, что в основе любой примочки лежит обыкновенный усилительный каскад, который уже подогнан под оптимальный режим и ни в каком экстриме не нуждается.

*Применение электронно-световых индикаторов позволяет получить более мягкое звучание. Штука красивая, не спорю. Однако по сути это обыкновенный триод+индикатор, которым управляет анодный режим триода. Это обычная усилительная лампа, которая на фоне остальных ни чем особо не выделяется и требует поддержания оптимальных режимов работы.

Что вспомнил, рассказал. Если есть вопросы – .

С уважением Павел А. Улитин (aka ). г. Чистополь, Татарстан.

Любопытная точка зрения от Павла Макарова. Представленные рассуждения автора весьма и весьма разумны, здравого смысла в размышлениях довольно много. Именно поэтому сведения приведены на моём сайте.

Энтузиасты вакуумных ламп часто классифицируют полупроводниковый звук как «жёсткий» и «прозрачный», тогда как ламповый звук они называют «тёплым». Если продолжить аналогию прозрачного окна в мир, использованную Робертом Харли в своей «Энциклопедии Hi-End Audio», для характеристики неискаженного звуковоспроизведения, можно сказать, что приверженцы лампового звука вставляют в свои оконные рамы матово-розовое стекло. Приятный звук - не есть мера качества и достоверности. Среднечастотные инструменты, например, электрогитара, когда они играют через ламповый усилитель с большими искажениями второго порядка, будут звучать убедительно. Однако если вы попытаетесь через тот же усилитель воспроизвести звук хорошего концертного рояля, он станет «ватным» и потеряет все нюансы. А попытки различного рода «усовершенствования» лампового УМЗЧ - такое же бессмысленное занятие, как ускорение работы механического арифмометра: он никогда не сможет работать быстрее и точнее простого электронного калькулятора.

А теперь пройдёмся по недостаткам:

1.Реактивная природа выходного трансформатора в ламповых усилителях обусловливает значительные фазовые сдвиги в звуковом сигнале, особенно на краях звукового диапазона частот;

2.Поскольку трансформатор является нелинейным элементом с распределенными параметрами, то при охвате лампового усилителя общей ООС, он превращается в модулирующий гребенчатый фильтр звуковых частот;

3.Ламповые усилители неадекватно воспроизводят импульсные сигналы и переходные процессы (вследствие указанных выше причин);

4.В природе не существует ламп противоположной проводимости, что делает невозможным построение полностью симметричных, "зеркальных» схем, свободных от чётных гармоник;

5.Низкая крутизна вольтамперной характеристики (ВАХ) ламп не позволяет реализовывать усилительные каскады с большим коэффициентом усиления и/или малым выходным сопротивлением, а также высококачественные бестрансформаторные усилители (с небольшим числом усилительных каскадов);

6.Ввиду больших геометрических размеров, лампы уступают современным транзисторам по динамическим характеристикам, что не позволяет реализовать достаточно широкополосный (даже бестрансформаторный) ламповый усилитель;

7.Импеданс громкоговорителя должен быть согласован с отводами на выходном трансформаторе, и большинство ламповых усилителей не универсальны при работе на широкий диапазон нагрузок;

8.Ламповые усилители имеют очень низкий к.п.д, из-за необходимости подогрева нитей накала;

9.Ламповые усилители демонстрируют меньшую надежность, чем хорошо спроектированные полупроводниковые устройства и более подвержены процессам старения компонентов из-за циклического перепада температур, а также потери эмиссии;

В заключении следует привести интересное наблюдение, о котором упоминают некоторые авторы. Вполне объяснимо, что инженеры, работающие со звуком в студиях звукозаписи, платят большие деньги за самое лучшее звуковое оборудование, поскольку их заработок зависит от высочайшего качества звука, достижимого за любую цену. Если бы ламповые усилители обеспечивали более высокое качество звучания, чем транзисторные, то все известные в мире студии звукозаписи были бы уставлены ламповыми усилителями. В действительности, за исключением гитарного лампового комбика, вы никогда не увидите ламповых УМЗЧ в приличных студиях звукозаписи.

Браво! Павел Макаров, здравого смысла много не бывает.

Можно попытаться сформулировать возражения, в соответствии с изложенным порядком претензий Павла Макарова к ламповой чудо-технике. Сразу хочу оговориться, что изложенные мысли не следует считать противоборством уважаемому автору. Большей частью это всего лишь поправки, исправления некорректностей и уточнения по существу, нередко обоснованных претензии. Лично у меня нет предубеждения против транзисторной техники, как нет и фанатичного обожания ламповых монстров. Хочется думать, что мне ближе взвешенная и разумная оценка достоинств всех усройств для воспроизведения звука, выполненных на высоком профессиональном уровне и с большой ответственностью за результат. Такой подход хотелось бы иметь всегда и называть его подходом преобладания здравого смысла.

Недостаток 1. Реактивная природа выходного трансформатора в ламповых усилителях обусловливает значительные фазовые сдвиги в звуковом сигнале, особенно на краях звукового диапазона частот.

Совсем не смертельно. Природа выходного трансформатора действительно реактивная. В любом усилителе довольно много пассивных реактивностей. И от этого не следует падать в обморок. Есть простой и железный аргумент в пользу трансформатора. Это пассивный элемент и он не обладает функцией управления (непрогнозируемого вмешательства), как активные нелинейные усилительные элементы. Трансформатор лишь передаёт сигнал, адаптируя его к нагрузке с заданными режимными параметрами А пользы от природы явления трансформации выходного трансформатора, в смысле согласования сопротивления ламп и громкоговорителя значительно больше, чем вреда. Неоспоримым же достоинством самого лампового усилителя можно считать минимальное число вредных звуку нелинейных активных усилительных элементов и отсутствие ядовитых для звука транзисторных р-n - переходов.

Недостаток 2. Поскольку трансформатор является нелинейным элементом с распределенными параметрами, то при охвате лампового усилителя общей ООС, он превращается в модулирующий гребенчатый фильтр звуковых частот.

Описание второго недостатка некорректно . Каша из суждений.

Во-первых нелинейный трансформатор используется в максимально линеаризованном режиме в самодельном усилителе, который тщательно остраивают, именно с целью достижения предельно возможного качества. Нелинейность его характеристик существенно скомпенсирована схемными решениями и режимными ограничениями, таким образом, чтобы даже на краях частотного диапазона удалось обеспечить уровень нелинейных искажений, который создаёт результат, практически недоступный для серийного, плохо настроенного транзисторного усилителя. Пожалуй только фанатик, станет настраивать серийный бытовой транзисторный усилитель, и побирать составляющие его компоненты по требуемому уровню качества. Люди пользуются готовенькими изделиями, нередко с транзисторами говённого качества. А вот ламповые штучки делают единичными образцами и настраивают довольно тщательно, подбирая лампы, которых в изделии всего 3-4 штуки, а не 30-40 транзисторов. Справедливости ради надо сказать, что нужно все усилители настраивать добросовестно и качественно. Но реальность совсем иная. И это железный факт, против которого не попрёшь.

Во-вторых , абсолютно некорректно объявлять выходной трансформатор лампового усилителя устройством с распределёнными параметрами. Это или лукавство или малокомпетентность. Нет смысла уходить в волновую расчётную область, создавая расчётные погрешности на порядок большие, нежели стандартные инженерные методики. Не нужно объявлять устройство с сосредоточенными параметрами и известной схемой замещения волновым объектом, и тем более в звуковом частотном диапазоне. Но справедливости ради могу заметить, что я встречал "научные" публикации, в которых волновым объектом считали листвяжные деревянные столбы линий электропередачи на частоте 50 герц. А также другую подобную хрень. Это игра ума, на пороге шизофрении. В связи с изложенным предлагаю оставаться в зравом уме и трезвой памяти и не лезть в темноту, не разбираясь в понятиях.

В третьих , обобщение, о том что трансформатор превращается в гребенчатый фильтр при употреблении ООС требует конкретизации, т.е. подтверждения расчетом. Нужны конкретные значения параметров системы и набор условий, при которых такая фишка становится возможной. В электронике нелинейщину считают численными методами и только в консервативных системах с сосредоточенными параметрами. В радиотехнике же нелинейщину вовсе оценивают приближенно, при чем здесь распределелённые параметры не ясно. Желательно быть аккуратнее в терминологии, иначе можно договориться до "модулирующей" белочки. Как бы ни хотелось увидеть чудо, но ни во что транформатор не превращается, а остаётся железякой.

Недостаток 3. Ламповые усилители неадекватно воспроизводят импульсные сигналы и переходные процессы (вследствие указанных выше причин)

Совсем не смертельный . Ну пятна бывают и на солнце, и что? Ограничения в передаче через лампу импульсного сигнала есть. Не совсем корректное преобразование, ограничение скорости налицо, полоса частот узковата и гармошек довольно много. Но зато все они сравнительно не велики по амплитуде, а хвост ограниченной длины. Поэтому они совсем не злые, как полупроводниковой технике, для восприятия ухом человека. Обыкновенный транзисторный усилитель сделает "подарок" гораздо менее точный и несравненно менее приятный для слуха. Здесь важен вопрос меры адекватности. А меры этой оказывается вполне достаточно при тщательной настройке лампового усилителя, созданного из минимального числа элементов.

Недостаток 4.

Абсолютно справедливое утверждение , нету ламп с противоположным типом проводимости. Но и это не смертельно. Зато есть вакуум, совершенно нейтральная среда по отношению к носителям заряда. И симметрию полную обеспечить невозможно, верно. А разве это фатально? Гляньте в зеркало, неужели несимметрия лица - смертельное заболевание? Думаю, что нет. Может стоит добавить здравого смысла, буквально чуток? Нужно попробовать применить рациональные схемные решения для духтактного скелета и не доводить режим нагрузки до предела. Скорее всего удача улыбнётся и получится очень приличный по качеству ламповый усилитель. Ведь даже на корявую несимметричную рожу некоторым персонам удаётся нацепить корону европейских монархов и носить её десятилетиями.

Недостаток 5 .

Имеет самое малое отношение непосредстенно к ламповым усилителям . А и не нужно большой крутизны характеристик. Вполне достаточно доступных внутриламповых ресурсов. И без этого прямой звуковой тракт ламповика содержит всего 3 лампы. И при этом оказывается реализованным полномасштабный качественный звуковой усилитель. Может я чего-то не понимаю, но на трёх транзисторах усилитель звука создать затруднительно. А сравнимого с ламповиком качества - невозможно. Насколько мне известно, именно лампы имеют сопротивление - меньшее по сравнению с транзисторами по отношению к нагрузке. Бестрансформаторные же усилители и не нужны обыкновенным людям. Экзотика и различные аномальности вообще удел избранных "особенных" персон. Богом избранных или сатаною. Я излагаю собственную позицию в рамках образа жизни сообщества с традиционной ориентацией.

Недостаток 6 .

Недостаток не очевиден, совсем не очевиден . Как говорят в быту? А говорят, что размер имеет значение, причём говорят-то с плюсом. Но в отношении другого предмета. А в отношении широкополосности звукового устройства, высокого уровня качества, есть стандарт. Полосу шире чем по ГОСТ вряд ли нужно. И поэтому утверждение о недостатке под номером 6 считаю сомнительным. Не очевиден этот недостаток при разумных ограничениях в потреблении. Ну а маркетинговые крайности и экстремизм, нередко приходится наблюдать во многом.

Недостаток 7.

Ламповые усилители действительно не универсальны , как транзисторные. И это вовсе неплохо. Требование универсальности избыточно по отношению к предмету узкой специализации и высокого качества. Оно в принципе противоречит назначению лампового усилителя. Неразумно требовать универсальности от Ролсс-Ройса, чтобы картошку на нём возить. Конкретный ламповый усилитель ориентирован под конкретное сопротивление акустики с небольшими вариациями.

Недостаток 8.

Низкий КПД лампового усилителя это бесспорный факт . Никуда от этого не денешься, накал съедает до 50% электричества. Но кому от этого плохо? И в какой мере? Нужно отдать себе отчёт в том, что это микроскопические потери, в сравнении даже с незаметными бытовыми потерями электроэнергии в виде одной включенной лампочки, в туалете забывчивого телезрителя. КПД вовсе не является определяющим фактором качества усиления звука. Этот показатель никак не связан с понятием качество воспроизведения звука.

Недостаток 9.

Имеет место и бесспорен , стареют лампы. У человека тоже есть этот недосток, он стреет. И это гораздо более существенный недостаток, поскольку он необратим. А старение компонентов лампового усилителя легко поправимая проблема. Причем это гораздо менее заметная проблема, чем нередкая починка автомобиля при плохих дорогах или регулярная замена масла в двигателе. Один раз в несколько лет можно заняться заменой электронных ламп в усилителе. Это несколько оживляет жизнь и вносит в неё разнообразие.

Недостаток 10.

Выходное сопротивление трансформатора действительно не может быть радикально уменьшено. И повышение резистивного сопротивления действительно несколько меняет характер колебательности. Однако это меньшее из зол от стыковки лампового усилителя с многополосной акустикой, оснащенной разделительными фильтрами высоких порядков и компрессионными динамиками. Гораздо хуже снижение достоверености передачи звука вследствие резкого увеличения фазовых искажений на границах раздела полос. И именно поэтому не следует применять для ламповика многополосную акустику с разделительными фильтрами. Для лампового усилителя нужна широкополосная акустика без фильтров. Ну это обыкновенная объективная реальность. Всем ведь привычно, что разные колёса в автомобиля ВАЗ и у Мерседеса, и совсем другие колёса у трактора Беларусь. Наверное это недостаток.

Остальное допишу позднее.

А вот слова, сказанные Павлом в завершении его исходной статьи рациональны и точны, даже комментировать смысла нету. Действительно, студийное усилительное оборудование имеет экстремально высокий класс, построено на полупроводниках и настроено очень качественно. Но ценник у такого оборудования космический, что делает описываемые материальные предметы недоступными для всех телезрителей без исключения. Да это им и не нужно. Спорить здесь просто не о чем. Я всегда догадывался, что хорошо настроенный ламповый усилитель обыкновенному телезрителю вполне доступен. А вот качественный транзисторный звук из столь же качественного транзисторного оборудования не доступен принципиально.

По материалам публикации заметку подготовил

Евгений Бортник, Красноярск, Россия, июнь 2016