Можно ли слышать ультразвук. Ультразвуковые волны есть везде. А вы их слышите? Но почему не все слышат эти звуки

Принципиальная схема самодельного устройства для возможности прослушивания ультразвуковых акустических волн. Как известно, человеческое ухо не способно слышать звук частотой более 20кГц. Акустические колебания более высокой частоты и являются ультразвуком. Они могут быть по частоте от 20 кГц до сотен кГц и даже вплоть до 1 Мгц.

Но утверждение о том, что мы не слышим ультразвук не совсем верно. Наши органы слуха, да и весь наш организм, безусловно на него реагируют, но понять этого мы не можем.

Именно по этому ультразвук может оказывать на нас как положительное, так и отрицательное воздействие. Например, в зоне где есть достаточно мощный источник ультразвука нам кажется что мы находимся в тишине, но при этом мы быстро устаем, наш слух притупляется (явная перегрузка органов слуха), может появиться головная боль или ощущение заложенных ушей, головокружения.

Здесь описывается прибор, который позволяет услышать ультразвук, в буквальном смысле, именно услышать, а не зарегистрировать его наличие.

Прибор понижает частоту входного звукового сигнала до слышимого нам уровня, делая это путем преобразования частоты. Практически, это такой ультразвуковой супергетеродинный приемник, преобразующий входной сигнал - ультразвук, в низкую «промежуточную» частоту, доступную для нашего восприятия.

Принципиальная схема

Схема прибора показана на рисунке 1. На микросхеме А1 сделан генератор частоты гетеродина, эта частота должна отличаться от частоты ультразвука, который желаем услышать, на 1-10 кГц, то есть, на частоту хорошо слышимую нашим человеческим ухом. Частота регулируется переменным резистором R1 в пределах примерно от 25 до 50 кГц.

При необходимости охватить больший диапазон можно переключать конденсаторы С1, выбрав их разной емкости, чтобы переключателем можно было переключать поддиапазоны.

На преобразователь частоты сигнал гетеродина, имеющий форму прямоугольных импульсов, поступает через делитель на резисторах R3 и R4, который понижает амплитуду этих импульсов.

Рис. 1. Принципиальная схема прибора, который позволяет услышать ультразвуковые акустические волны.

Преобразователь частоты сделан на микросхеме А2 типа SA602. Эта микросхема широко известная радиолюбителям и обычно используется в схема радиоприема в качестве преобразователя частоты. Здесь она так же работает в качестве преобразователя частоты.

На её вход поступает сигнал от микрофона М1, а на гетеродинный вход поступает сигнал гетеродина он гетеродина на микросхеме А1.

Естественно, на выходе будет суммарно - разностный сигнал, он поступает с вывода 5 А2 через регулятор громкости R5, на УНЧ на микросхеме АЗ. Цепь R7-С12 служит простейшим фильтром низких частот, подавляющим суммарный сигнал.

В результате на УНЧ на микросхеме АЗ поступает только разностный сигнал. Который затем усиливается и озвучивается головными телефонами В1.

УНЧ на микросхеме АЗ типа LM386 работает в режиме максимального усиления с коэффициентом усиления 200. На выходе можно установить и динамик, но нужно следить за громкостью, чтобы не возникло самовозбуждения.

Если имеется хороший лабораторный генератор синусоидального или прямоугольного сигнала, от которого можно получить частоту в пределах от 20 кГц до 1 Мгц, то предпочтительнее будет в качестве гетеродина использовать его.

В этом случае схема приобретает вид, как показано на рисунке 2. С помощью такого прибора можно прослушать на наличие ультразвука практически весь ультразвуковой диапазон. На схеме на рис. 2 нумерация деталей сохранена как на рис.1.

Рис. 2. Схема прибора для прослушки ультразвука с использованием внешнего генератора сигнала в качестве гетеродина.

Схему, безусловно, можно модифицировать. Например, генератор на микросхеме А1 типа 555 (так называемый интегральный таймер) можно заменить схемой мультивибратора на логической микросхеме, например, К561ЛА7, как показано на рисунке 3. Эта схема позволяет регулировать частоту плавно переменным резистором R2 от 25 кГц до 400-500 кГц.

Возможны и другие варианты схемы гетеродина. Микрофон М1, конечно же, желательно использовать специальный на ультразвуковой диапазон. Но, в отсутствии такового сойдет и высокочастотная динамическая головка.

Конечно, её чувствительность в качестве микрофона будет маловата, но вполне достаточна, если прослушивать сигнал на головные телефоны (В1).

Желательно микрофон снабдить параболическим рупором, чтобы можно было удобнее локализовать источник ультразвука. Следует принять во внимание, что используя в качестве микрофона высокочастотную динамическую головку, чувствительность будет снижаться тем более, чем выше частота ультразвука, который нужно прослушать.

Рис. 3. Схема генератора сигнала на микросхеме К561ЛА7.

Устройство было изготовлено с экспериментальными целями, поэтому собрано оно было на печатной макетной плате. Специальная печатная плата для него не разрабатывалась.

Рис. 4. Принципиальная схема генератора ультразвукового акустического сигнала.

Какой-либо настройки не требуется, работает сразу же после включения. Для проверки был собран генератор ультразвука по схеме на рис. 4.

Подгорное А. РК-01-18.

Радиоконструктор 2007 №2

Ультразвуки окружают нас повсеместно, это могут быть «переговоры» животных, шумы различного оборудования, а так же ультразвуки специально генерируемые эхолотами, медицинскими приборами. В отличие от звуков слышимого диапазона ультразвуки действуют на нас незаметно. И не всегда благоприятно. Наглядный пример, - в определённом месте, например, возле какого-то агрегата, у вас болит голова, и слух как-то понижен. Все симптомы оглушения, но вокруг тишина. Кажущаяся тишина. На ваши уши давят «децибелы» ультразвукового диапазона, они оглушают вас, но вы этого не можете понять, потому что вы не слышите мешающих вам акустических колебаний.

С помощью этого несложного прибора можно не только определить источник ультразвука его интенсивность, но и «прослушать» ультразвук, определить характер его звучания (прерывистый, с изменяющейся частотой, и др.).

Основой прибора служит ультразвуковой микрофон MA40B8R (М1). Число «40» в его названии говорит о частоте (40 кГц), на которой у него максимальная чувствительность. На частоте ниже 32 кГц чувствительность резко падает (-90dB). Такая характеристика чувствительности дает возможность использовать его для контроля за ультразвуком без применения специальных фильтров, подавляющих звуковые частоты.

Схема индикатора уровня ультразвука состоит из микрофона М1, двухкаскадного усилителя на транзисторах VT1 и VT2 и измерителя переменного напряжения на диодах VD1, VD2 и стрелочном индикаторе МА. Переменное напряжение с Ml через регулятор чувствительности R7 поступает на двухкаскадный усилитель. Затем усиленное переменное напряжение детектируется диодами VD1 и VD2. На конденсаторе С6 образуется постоянное напряжение, пропорциональное уровню громкости ультразвука. Это напряжение показывает стрелочный прибор МА.

Для прослушивания ультразвука используется метод понижения его частоты до частот звукового диапазона путём деления цифровым счётчиком.

С коллектора VT2 переменное напряжение ультразвуковой частоты поступает на формирователь импульсов на транзисторе VT3. Транзистор включён без смещения на базе и лавинообразно открывается, когда амплитуда переменного напряжения на его базе превышает барьер открывания транзистора.

Импульсы с коллектора VT3 поступают на счётный вход двоичного счётчика D1. Счётчик делит их частоту на 128. Затем, с выхода счётчика импульсы поступают на головные телефоны.

В результате, например, ультразвук частотой 40 кГц головные телефоны воспроизводят как звук частотой 312,5 Гц (40/128=0,3125). Теперь мы можем «слышать» ультразвуки, следить за изменением их частоты, и определять их интенсивность по стрелочному индикатору. Недостаток в том, что громкость звука в наушниках не зависит от громкости ультразвука, но это компенсируется стрелочным индикатором уровня.

Большинство деталей установлено на печатной плате из стеклотекстолита с односторонней фольгировкой. Плата помещена в пластмассовый корпус и расположена вдоль него. Рядом с ней в специально пропиленном в корпусе отверстии установлен импортный стрелочный индикатор (аналогичен индикатору М470) с торцевым положением шкалы. Ток полного отклонения стрелки индикатора 300mA, а сопротивление 1200 Ом. Однако, можно применить любой похожий микроамперметр, со шкалой не более 400mA и сопротивлением не менее 300 Ом. Скорректировать его чувствительность можно включением последовательно дополнительного резистора, сопротивление которого нужно будет подобрать опытным путём.

Микросхему К561ИЕ20 можно заменить счётчиком К561ИЕ16. При этом, выходным будет не 4-й, а 6-й вывод микросхемы (нужно немного изменить печать платы).

Выключатель питания микротумблер, установленный пайкой на плату. Одновременно, гайка крепления тумблера на панель служит элементом крепления платы в корпусе. Разъём Х1 - гнездо для малогабаритных головных стереотелефонов, он так же установлен на плате. Схема подключения этого разъёма такова, что головные телефоны работают включёнными последовательно.

Источником питания служит батарея «Крона» напряжением 9V.

Подстроенный резистор R7 можно заменить переменным, тогда можно будет регулировать чувствительность прибора в широких пределах.

Рисунок печати платы и монтажная схема показаны на рисунке 2, а на рисунке 3 показано каким образом детали прибора размещены в корпусе.

Рисунок 2. Печатная плата

Рисунок 3. Монтажная схема.

Рисунок 4. Схема расположения.

В налаживании нуждаются усилительные каскады на транзисторах VT1 и VT2. Установив подстроенный резистор в положение минимальной чувствительности (движок вниз до конца, по схеме), нужно измерить постоянные напряжения на коллекторах VT1 и VT2. Если эти напряжения выходят за пределы 2,5-3V, нужно подобрать сопротивления базовых резисторов (R1 и R2, соответственно).

Есть звуки, которые может расслышать только небольшая часть людей. Хоть кто-то даже не подозревает об их существовании, для других это серьезная проблема. Звуки настолько громкие, что вызывают раздражение и головную боль у людей, к ним чувствительным. Здесь идет речь об ультразвуковых волнах. Ученые до сих пор не могут определиться, насколько они распространены, какой вред наносят обществу.

Тимоти Лейтон

Классу "ультразвук" было посвящено более десяти лет исследований Тимоти Лейтона, профессора акустики. О результатах своей работы он рассказал сравнительно недавно - 9 мая 2018 года.

Кто слышит ультразвук?

Лейтон в интервью рассказал, что слышать ультразвук может далеко не каждый из нас. Слишком это высокая частота для человеческого уха. Но на практике ультразвуковая волна может быть ощутима для следующих категорий:

  • Новорожденные дети.
  • Подростки и молодые люди.
  • Мужчины и женщины, обладающие чрезвычайно острым слухом.

Проблема чувствительных к ультраволнам

Для всех этих людей ультразвук - достаточно серьезная проблема. Она усугубляется тем, что на сегодняшний день мало изучена. Тимоти Лейтон рассказывает, что к нему приходят люди, которые плохо себя чувствуют в определенных зданиях. Им кажется, что их постоянно окружают неприятные, непрерывные давящие звуки.

С подобной проблемой людей направляют проверить слух у ЛОР-специалиста, который, конечно же, не находит никаких отклонений. Это заставляет пациента думать, будто эти звуки только в его голове, будто он сошел с ума, слыша то, чего нет в действительности.

Исследование проблемы в научном мире

Проблема еще и в том, что очень мало ученых посвящают себя исследованию ультразвука. Тимоти Лейтон говорит, что в мире найдется максимум шесть исследователей, занимающихся данным вопросом. Этим обстоятельством он объясняет и большое количество человек, желающих попасть к нему на консультацию.

Вышесказанное при этом не обозначает, что труды ученого не входят в научный мейнстрим. Лейтон был одним из двух сопредседателей, приглашенных на сессию по высокочастотному звуку, проходящую в рамках заседаний АСА. За свои исследования ученый получил награду Клиффорда Патерсона от Королевского общества (за отдельные исследования в области подводной акустики).

Важно выделить, что большинство ученых, исследовающих ультраволны, не направляют свои труды на то, чтобы определить, как эти звуки влияют на человека. Когда журналисты обратились к коллегам Лейтона для комментирования поднятой проблемы, они честно признались, что не имеют достаточных знаний, чтобы рассуждать в данном ключе.

Ислледования Лейтона

Да, ультраволны везде. А вы их слышите? Профессор Лейтон - нет. Однако он обеспокоен проблемами чувствительных к ультразвуку людей. Ученый отправился для исследования ультраволн в здания, где его посетители чувствовали у себя неприятные симптомы. С помощью специальных приборов он установил наличие ультразвука внутри этих помещений.

Что печально, это общественные места, которые посещают 3-4 миллиона человек в год. Поэтому высока вероятность, что среди них будет и немалое число чувствительных к звуку. При воздействии ультраволн эти люди чувствуют неприятные симптомы: головную боль, звон в ушах, тошноту, шум в голове. Стоит покинуть помещение, как проявления ослабляются. Примерно через час человек чувствует себя уже нормально.

К сожалению, сегодня болезнь, вызванная ультразвуком, считается чем-то из разряда шарлатанства и суеверий. Ведь ученые просто не представляют, как эти звуковые волны воздействуют на человеческий организм.

Массовое ультразвуковое воздействие

Возможно, проблема непопулярна и из-за того, что число пострадавших от воздействия ультразвука сравнительно мало во всемирном масштабе. Но все же в истории были и громкие события, связанные с негативным его воздействием.

В качестве примера Лейтон приводит показательный случай. Прибывшие на Кубу американские дипломаты стали массово страдать от комплекса симптомов, которые испытывают чувствительные к ультразвуку люди. Они жаловались на непрекращающуюся головную боль, страдали от шума в ушах и даже потери слуха. Есть мнение, что против них было применено секретное ультразвуковое оружие.

Тимоти Лейтон считает, что негативное воздействие ультразвука на человека - это проблема мирового масштаба. И дело не в том, что она приносит страдания небольшой группе чувствительных к ультразвуковым волнам людей. Ультразвук пагубно воздействует на всех, особенно на молодежь. Только нечувствительные к нему люди его не замечают, списывают неприятные симптомы на другую причину.

Почему не все слышат ультразвук?

Исследования, посвященные чувствительности человеческого уха к различным звуковым волнам, были проведены еще в 1960-70-х гг. Ученым нужно было выяснить, какое воздействие звука на рабочем месте считается допустимым, приемлемым для труда. Тогда было установлено, что ультразвук не является проблемой для работника, если его частота - 20 кГц (или 20 000 вибраций в секунду).

Почему мы его не различаем? Этот звук слишком высокий для человеческого уха. Особенно для взрослого человека. Как только тоновый звук поднимается на 16 кГЦ, большинство людей перестают его слышать.

Но это касается только взрослых. Если ваши школьные годы пришлись на 2000-ые, вы помните, как была популярна мелодия "писк комаров". Она раздражала всех ваших одноклассников, но учителя ее не слышали. А ведь это и был тот самый ультразвук. Важно отметить, что мужчины становятся нечувствительными к звукам высоких диапазонов раньше, чем женщины.

Недостатки прошлых исследований

Тимоти Лейтон утверждает, что главный недостаток исследований 60-70-х годов о допустимом воздействии на человеческий организм ультразвука связан с тем, что в экспериментах участвовали взрослые мужчины. А из вышесказанного легко определить, что они не слышали те раздражающие звуки, что улавливают молодые женщины и дети.

Поэтому требования к уровню шума, которыми руководствуются во многих государствах мира, совсем неверные. Они не защищают людей, чувствительных к ультразвуку. Яркий тому пример: школьник стал нервным и раздражительным от того, что одноклассник включил на своем телефоне "писк комара". Но учитель не слышит этого звука, он наказывает этого ребенка за плохое поведение, не зная его причины.

Использование ультразвка

Сегодня ультразвук успешно применяется во многих общественных местах для отпугивания грызунов. Он непрерывно передается по датчикам. Это характерно для ресторанов, железнодорожных станций, стадионов и прочих общественных мест.

Источником ультразвука является и автотранспорт. Кроме того, он часто используется и для тестирования громкоговорителей. Отсюда видно, что чувствительным к ультраволнам людям практически негде спрятаться от них в городе.

Решение проблемы

Но Лейтон уверен, что проблему возможно решить. Самое главное - популяризировать ее. Ведь люди, которые не слышат ультразвук, даже не предполагают, как он негативно влияет на других.

Второе - призвать производителей устройств, транслирующих ультразвук, ориентироваться на современные, а не на устаревшие нормы. Сам ученый говорит, что уже находятся предприятия, которые интересуются его исследованием и устраняют проблему.

И третье - популяризировать проблему в научном мире. Заинтересовать ученых в проведении исследований в данной области.

Если мы не ощущаем проблемы, это не значит, что ее нет. В этом и убеждают исследования Тимоти Лейтона.

Если вы слышите какие-то звуки, которых не слышат другие люди, это вовсе не значит, что у вас слуховые галлюцинации и пора к психиатру. Возможно, вы относитесь к категории так называемых хамеров. Термин происходит от английского слова hum, означающего гул, гудение, жужжание.

Странные жалобы

Впервые на феномен обратили внимание в 50-х годах прошлого столетия: люди, проживающие в разных концах планеты, жаловались на то, что постоянно слышат некий равномерный гудящий звук. Чаще всего об этом рассказывали жители сельской местности. Они утверждали, что непонятный звук усиливается в ночное время (видимо, потому, что в это время снижается общий звуковой фон). У тех, кто слышал его, нередко наблюдались и побочные эффекты – головная боль, тошнота, головокружение, носовые кровотечения и бессонница.

В 1970 году на загадочный шум пожаловались сразу 800 британцев. Подобные эпизоды происходили также в Нью-Мексико и Сиднее.

В 2003 году специалист по акустике Джефф Левенталь обнаружил, что странные звуки способны слышать лишь 2% всех жителей Земли. Преимущественно это люди в возрасте от 55 до 70 лет. В одном случае хамер даже покончил жизнь самоубийством, так как не мог выносить непрекращающийся гул.

«Это своего рода пытка, иногда просто хочется закричать, - так описывала свои ощущения Кэти Жак из Лидса (Великобритания). - Трудно уснуть, потому что я слышу этот пульсирующий звук непрерывно. Начинаешь ворочаться и еще больше думаешь об этом».

Откуда шум?

Отыскать источник шума исследователи пытались давно. В начале 1990-х сотрудники Лос-Аламосской национальной лаборатории университета Нью-Мексико пришли к выводу, что хамеры слышат звуки, которые сопровождают движение транспорта и производственные процессы на заводах. Но эта версия спорна: ведь, как уже говорилось выше, большинство хамеров проживают в сельской местности.

По другой версии, никакого гула на самом деле нет: это иллюзия, порожденная больным мозгом. И наконец самая интересная гипотеза гласит, что у некоторых людей повышенная чувствительность к низкочастотным электромагнитным излучениям или сейсмической активности. То есть они слышат «гул Земли», на который большинство людей внимания не обращают.

Парадоксы слуха

Дело в том, что среднестатистический человек способен воспринимать звуки в диапазоне от 16 герц до 20 килогерц, если звуковые колебания передаются по воздуху. При передаче звука по костям черепа диапазон возрастает до 220 килогерц.

Например, колебания человеческого голоса могут варьироваться в пределах 300-4000 герц. Звуки выше 20 000 герц мы слышим уже хуже. А колебания ниже 60 герц воспринимаются нами как вибрации. Высокие частоты называются ультразвуком, низкие – инфразвуком.

Не все люди одинаково реагируют на различные звуковые частоты. Это зависит от множества индивидуальных факторов: возраста, пола, наследственности, наличия слуховых патологий и проч. Так, известно, что есть люди, способные воспринимать звуки высокой частоты - до 22 килогерц и выше. В то же время животные порой могут слышать акустические колебания в диапазоне, недоступном человеку: летучие мыши используют ультразвук для эхолокации во время полетов, а киты и слоны предположительно общаются между собой при помощи инфразвуковых колебаний.

В начале 2011 года израильские ученые выяснили, что в человеческом мозге имеются особые группы нейронов, которые позволяют оценить высоту звука вплоть до 0,1 тона. У большинства видов животных, за исключением летучих мышей, таких «приспособлений» не имеется. С возрастом из-за изменений во внутреннем ухе люди начинают хуже воспринимать высокие частоты и развивается нейросенсорная тугоухость.